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Abstract. This paper is a collection of examples showing various effects on configurational 
properties of a random walk under the constraint that the ends of the random walk be 
fixed. Some formalism is developed for the solution of such problems, allowing us to 
express results in terms of the characteristic function of the unconstrained random walk. 
Several applications of this formalism are made in the paper. Typical of these is the result 
that fixing the ends of a random walk with an underlying stable-law density forces the 
steps of the resulting walk to have a number of finite moments. Other results show a range 
of differences to be expected between properties of constrained and unconstrained random 
walks. 

1. Introduction 

The problem of determining configurational properties of polymer chains under con- 
straints, exemplified by the requirement that the two ends of the chain be held a fixed 
distance apart, has been tackled by a number of investigators beginning with the work 
of Kuhn and his collaborators [l-41. A variety of related problems phrased in terms 
of diffusion was analysed by Hollingsworth [5]. Recently, Weiss and Rubin [ 6 ]  have 
discussed configurational properties of span-constrained random walks, while Domb 
[7] has used generating functions to calculate spatial moments for constrained random 
walks. The work of Kuhn er a1 and that of Domb produce no qualitative differences 
between the results for constrained and those for unconstrained random walks because 
of the nature of the questions asked. Hollingsworth [ 5 ] ,  on the other hand, investigated 
the effects of fixing the endpoints of a random flight on the probability of its passing 
close to one or more specified points during its course. In his investigation the form 
of this probability does differ from the simple Gaussian that is characteristic of the 
unconstrained flight. Hollingsworth, however, did not discuss any detailed conse- 
quences of his results. Other problems related to conditioning of random walks have 
been analysed, among others, by Bolthausen [SI, Pakes [9], Rubin and Weiss [lo], 
and Doney [ l l ] .  

In this paper, we consider some examples of effects of a specific class of constraints 
on configurational properties of continuum random walks. Our results relate mainly 
to effects produced by requiring that the end-to-end distance of an n-step random 
flight be a fixed vector. A further example demonstrates some effects of fixing both 
the first and second moments of a specific random walk. 
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In the absence of constraints the steps of the random walk will be assumed to be 
independent and identically distributed. The presence of a constraint, of course, 
introduces correlations between the individual steps so that tools developed for random 
walks with independent steps cannot be used without some modification. We examine 
the nature of these correlations as well as their effects on the probability density of 
the intermediate steps. It will be seen, for example, that when the steps of an 
unconstrained random walk have a stable-law distribution with no finite moments, 
then the requirement that the random walk passes through a fixed point at step n 
implies the existence of higher-order moments for the probability density of single 
steps m s n. In another calculation we show that the imposition of constraints on the 
first two moments of a random walk with zero-mean Gaussian steps implies that the 
probability density for a single step of the constrained random walk has a form 
drastically different from the original Gaussian. Thus, the effects of even rather simple 
constraints can lead to significant qualitative changes in the resulting behaviour of the 
constrained random walk. 

In a companion paper [12], we discuss the effect of fixing the end-to-end vector 
on the number of distinct sites visited by an n-step lattice random walk, where the 
constraint will also be seen to cause effects that differ substantially from those calculated 
for unconstrained walks. 

Several closely related kinds of constraints have been treated in the random walk 
literature. An example is provided by the calculation of properties of random walks 
constrained to remain within a specified region [13]. The present work suggests a 
somewhat different range of problems posed by the imposition of constraints, and 
proves a rich lode of interesting problems for further consideration. 

2. Characteristic functions and moments 

The focus of this paper is on the determination of properties of single-step and joint 
transition densities for a constrained random walk. These will be discussed in terms 
of the characteristic function for the underlying unconstrained random walk. Let p (  r )  
be the probability density function for the displacement in a single step of an uncon- 
strained random walk in D dimensions with independent and identically distributed 
steps. We will initially suppose that a single constraint of the form 

r , + r 2 +  . . .  + r n = u  (2.1) 
is imposed on the random walk. The set of random variables of interest will be the 
partial sums S,  = rl + r2 + . . . + r,, m 6 n. However, the principal configurational effects 
induced by the constraints are found in SI( = r , ) ,  so that we focus mainly on this 
quantity. 

We therefore denote by qn( r I U )  the probability density of a single displacement 
under the constraint imposed by (2.1), and denote by p , ( u )  the probability density for 
the unconstrained random walk to reach U at step n. The conditional density can then 
be expressed as 

where, in the delta function representing the effect of the constraint, we set rl = r and 
where the integration is over all space for each of the variables. Although we have 
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set rl = r, the rj appear symmetrically in the sum so that qn( r I U) represents the step 
density for any of the rj. If we insert the Fourier representation of the delta function 

exp( - io * r )  d D o  (2.3) 

into the expression for qn(rl  U), and use the characteristic function defined by 
oc; 

C ( ~ ) = j - ~ p ( r )  exp( iw . r )dDr  (2.4) 

then we find that qn ( r  I U) is 

exp ( - i o  - u ) C " ( o )  dDw. 

The characteristic function that can be associated with q,( r I U )  is 

C,(p I U )  = (exp (ip SI) IS, = 4 

q n ( r l u ) e x p ( i p - r ) d D r  

In a similar fashion we can associate the characteristic function 

C m , n ( p  I U )  = (exp (ip * s m )  I Sfl = U )  

with the partial sum S,. 
This representation of the characteristic function has at least one obvious and 

simple consequence, namely that the first moment of the displacement is always finite 
for step numbers s n ,  regardless of whether the unconstrained random walk has an 
average single-step displacement that is finite or not. This can be seen from the formula 
for the average sum of the first m steps, 

( S , I S , = u ) = m u / n  (2.9) 
which is obtained from (2.4) and (2.8) as 

(2.10) 

where ( S , ) ,  is the Ith component of S,. These first moments are determined solely 
by the constraint and by no other property of the unconstrained random walk. This 
is not, of course, true for higher moments, which will indeed depend on the specific p(  r). 
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It is instructive to consider the limit distribution derivable from (2 .8)  for n +CO. 

For simplicity, we restrict ourselves to a one-dimensional random walk in which the 
steps of the unconstrained random walk have a finite mean, p, and a finite variance, 
U’. The limiting densities of S,, m S n, will be found in the limits n, m >> 1 ,  in which 
one can use an argument familiar in random walk theory based on the approximation 

C ( w )  - exp (ipu - & ~ ’ w ’ )  w + Q .  (2 .11)  
This expansion allows us to infer the validity of the central limit theorem in the present 
context. Indeed, on making the approximation of (2 .11)  in both the numerator and 
denominator of ( 2 . 8 )  we find that 

C,,,(p/u)-exp [ i m u p / n - t m ( l - m / n ) a * p ’ ]  m, n+co (2 .12)  
which is the characteristic function corresponding to a Gaussian distribution for S,, 
the mean and variance of which are 

( S ,  I S, = u )  = m u / n  a ’ ( ~ , ~ ~ , = u ) - m ( l - m / n ) c r ~ .  (2 .13)  
It is interesting to observe that the bias parameter, p, does not appear in the expression 
given in (2 .12) .  This has a deeper reason which is explained in [ 1 2 ] .  Note that the 
expression for U’(& 1 S, = v )  has the correct qualitative behaviour in that it is equal 
to 0 when m = 0, n and reaches a maximum when m = n / 2 .  It is evident from this last 
equation that a2(S ,  I S,  = U )  is asymptotically independent of v which implies that the 
qualitative features of the constrained random walk are unchanged when v is allowed 
to depend on n. 

3. Stable-law densities 

3.1. The Cauchy walk 

An interesting effect arises in the case of stable-law walks. Let us examine the particular 
case of a one-dimensional random walk in which the component steps have a Cauchy 
density 

A x )  = 1 4 d 1  + x 2 ) l  ( 3 . 1 )  
which has a characteristic function C ( w )  = exp ( - Jw I )  and for which the density for 
the sum of n steps is 

p , ( x )  = n / [ . r r ( n 2 + x 2 ) ] .  ( 3 . 2 )  
In this simple example, we can find the probability density for a single step, x, of the 
constrained random walk by evaluating the integral in ( 2 . 5 )  exactly. One finds that 

As we have mentioned, q , ( x l v )  must have at least one finite moment. It is evident 
from this expression that q,,(xI U )  has both a finite first and second moment, but not 
a finite third moment since q,,(x I v )  goes like x - ~  for large x2. The mean and variance 
of a single step are found to be 

( S ,  1 S,  = U) = v / n  a ’ ( ~ ,  1 s,, = u )  = ( n  - 1 ) ( 1 +  u 2 / n 2 ) .  ( 3 . 4 )  
It is readily verified from the first representation of q,(r l  U )  given in ( 2 . 5 )  that the 
probability density for the sum of m =s n constrained Cauchy random variables also 
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vanishes for large x2 as x - ~  so that the variance is finite also in this case, but not the 
third moment. It is of interest to compute the constrained variance, cr2( S ,  I Sn = v )  for 
the constrained Cauchy random walk. The exact result is 

c r 2 ( ~ , I ~ , , =  v ) = m ( n - m ) ( l + u 2 / n 2 )  (3.5) 
which may be compared to the large m, n result given in (2.12) for the finite-variance 
random walk. As is the case there, the maximum variance occurs when m - n / 2 .  If 
v is also allowed to depend on U ,  say u = uOnP, a qualitative change occurs in the 
dependence on n. When in is held fixed and n increased, the order of the variance is 
n, provided that p s 1. However, when @ > 1 the order of the n dependence is greater 
than n. This change of behaviour also occurs in the correlation function calculated 
later in (3.19). 

3.2. General stable-law walks 

Our remarks leading to (3.4) suggest the problem of finding the number of finite 
moments of a constrained random walk when the unconstrained walk has a stable-law 
form, i.e. p ( x )  - I x 0 < a G 2,  x I + 00. For such densities, the characteristic 
function has the property that C ( w )  - exp ( - I w l a ) ,  w + 0, from which we can infer, 
from ( 2 . 5 ) ,  that 

x+w.  (3.6) - 2 ( a + 1 )  
q n  (x I 0 )  - I x I 

Thus the numbers of finite moments for the constrained random walk whose steps are 
characterised by such stable-law densities are 1 for 0 < a s:, 2 for f < a 6 1, 3 for 
1 < a G 4 and 4 for 4 < a C 2. These results are valid not only for the single-step densities, 
but also for the density of the sum S ,  for all m G n. 

Similar results can be found for stable-law random walks in higher dimensions. 
Rather than trying to examine a very general case, we will1 analyse a particular example 
in two dimensions, namely, 

where r2 = x 2 + y 2 .  When O<p sf, p ( r )  has no finite moments and when f< p G 1, it 
has exactly one. The characteristic function corresponding to p (  r )  is 

in which w 2 =  w : + w :  and J o ( x )  is a zeroth-order Bessel function. The expression for 
q,, ( r l  U )  is given in (2 .5 ) ,  which in the present case will be written 

in which R = I r - U I and Q( R )  is defined by 

Q ( R )  = Im w C " - ' ( w ) J o ( w R )  do.  (3.10) 

The problem of determining the number of finite moments of q,,( r I U )  therefore depends 
on the evaluation of Q ( R )  in the limit of large R. An analysis given in the appendix 
shows that Q( R )  - R-2'1+P' for R + CO, so that 

q,, ( r  I U )  - r -4 ( l+p) .  (3.11) 

0 
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Hence, the number of finite moments for each step of the constrained random walk 
is 2 for 0 < p s i ,  3 for a <  p si, 4 for ;< p s i  and 5 for a <  p < 1. 

4. Correlation functions 

The existence of a constraint implies that the individual steps of the random walk 
must be correlated until the step at which the constraint is fulfilled. To examine and 
quantify this correlation, we develop the appropriate characteristic function formalism. 
Let q n ( r l ,  r,l U )  denote the joint density of two steps of the random walk. We note 
that because 
calculate the 
of steps. On 

the rj in (2.1) are interchangeable, we may choose any two steps to 
joint density; in other words, the joint density is the same for any pair 
following the steps leading to (2.5) we find 

The corresponding characteristic function is 

Without losing any qualitative features of the analysis we can again restrict ourselves 
to one dimension. A formal expression for the lowest-order mixed moment, (xlxzI S, = 
v ) ,  can be obtained from (4.2) in integral form as 

1 
(XlX2l s, = U) = -- J exp( - iw~)[C ' (w)]*c"-~(w)  dw. (4.3) 

2.rrPn(v) --a3 

Let us examine the behaviour of the covariance function (x,xp I S,, = v )  - (xl I S,  = v )  x 
(x21 S, = v )  as a function of n, on the assumption that the first two moments of p ( x )  
are finite. In the limit n -f CO, we may replace C ( w )  by its form for p(x), a Gaussian 
with mean equal to p and variance U'. It is possible then to evaluate C , ( p , , p , I v ) ,  
and we get 

which is independent of p as one might expect it to be [12]. The correlations come 
from the last term in the exponent which is proportional to n - I .  The specific form of 
the correlation function derived from (4.4) is 

(x1x2/S,, = v)-(xllS, = v)(x,I~, = v ) - - u 2 / n ,  (4.5) 

The associated variance is 

u2(xl S, = U )  - u 2 ( n  - l ) / n  (4.6) 

which is slightly less than the unconstrained value, which in the present case is exactly 
equal to u2. It is reasonable to conjecture in general that the variance calculated with 
a linear constraint will always be less than the unconstrained variance for U fixed and 
n +CO, but we have been unable to settle this question in any generality. 
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It is interesting to repeat this calculation for a distribution which has no moments. 
For simplicity, we consider only the Cauchy density given in (3.1).  In this case, since 
C ( w )  has such a simple form, it follows that 

n 2 + u 2  = - cfl ( P  1 3 P2 I sfl = exp [ -1w + pll - (U + p2/ - ( n  - 2)Iwl- iwu] dw (4.7) 

so that 

( x 1 x 2 1 ~ , ,  = u ) - ( ~ ~ ( ~ ~ = u ) ( x ~ ~ ~ ~ = u ) = ~ - u ~ / n ~  (4.8) 
which demonstrates the intuitively evident fact that constrained stable-law walks tend 
to be more highly correlated than random walks whose underlying densities have finite 
moments. Equation (4.8) is remarkable from two points of view. The first is that it 
approaches a positive limit as n + q  in contrast to the result given in (4.5). This 
contradicts the intuitively plausible notion that the covariance should decrease as n 
increases, since one expects the constraint to become less stringent for large n. This 
is indeed the case when the mean and variance of the unconstrained walk are finite 
as illustrated in (4.6). In the present case, however, because a large step induces further 
larger steps in order to satisfy the constraint, the covariance tends to a finite limit at 
large step numbers. 

5. Some generalisations 

There are a number of generalisations of the preceding analysis that are amenable to 
development along the lines described earlier. One of these replaces the simple 
constraint of (2.1) by a scalar constraint of the form 

(5.1) 
i = l  

wheref( rj) is a scalar function and F is a constant. This condition can be incorporated 
by means of a delta function into the integral representation of qn(rif,F). In this case, 
one finds 

qfl(rlA F ) = P ( ~ )  J exp [ i w ( f ( r ) - ~ ) ~ - ' ( w )  dw 
) - I  

oi 

exp (-iwF)B"(w) dw 

(5.2) 
--oo 

where 
m 

p( r )  exp (iwf(r)) dDr. (5.3) 

Vector constraints can be introduced in exactly the same manner through the use of 
a product of delta functions. 

Qualitatively interesting effects occur also in the case of multiple constraints, as 
will be seen by the following simple example. We assume that the underlying single-step 
density is a one-dimensional zero-mean Gaussian, which we take to be p ( x ) =  
( 2 ~ ) - ' ' ~  exp ( - x 2 / 2 ) .  Let us constrain both the n-step mean and variance of the 
random walk by requiring that 

f: x i = x  
i = l  i = l  

(5.4) 
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We will calculate the probability density for a single step of the constrained random 
walk. This function will be denoted by qn(x I X ,  S’) and is given by the ratio of two 
functions which have nearly the same form: 

q n  (x  I x, S’) = N n  (x, x, S’)/P, ( X ,  S’) ( 5 . 5 )  

where 

The method for evaluating these integrals is an extension of that used in 0 2. We 
evaluate the integral for p,(X, S’) as an illustration. 

By introducing Fourier integral representations of the two delta functions into (5.6) 
we find 

p,(x,  s2) =A J m  J e x p ( - i w , ~  - i w 2 s 2 ) ~ n ( w , ,  w 2 )  dw, dw2 (5.7) 47r --to 

where 

exp( -tx2 + iw,x + iw2x2) dx 

Substitution of (5.8) into (5.7) allows us to perform the integration over w l .  In this 
way, we find that p , ( X ,  S’) can be represented as a single integral of the form 

A simple way to evaluate this integral is to introduce the representation 

- J m  t ( n -3 ) /2  exp[-t(l-2iw)] d t  (5.10) (1 -2io)(n-1)/2 - 
1 

T((n - 11/21 

followed by an easily justified interchange of orders of integration. We then find 

30 

exp[-iw(s’-X’/n -2t) l  d o  J-“ 
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An expression for N,(x ,  X ,  S 2 )  can be found by using essentially the same technique. 
The resulting expression for the density q,,(x, X ,  S 2 )  is 

where the symbol V+ is defined by 
V v=o 

vso .  
The form for q,,(xIX, S 2 )  shown in (5.12) differs qualitatively from a Gaussian because 
it has compact support and contains a polynomial rather than an exponential. This 
of course must be the case because of the constraint that the sum of squares is fixed. 
The ends of the interval over which qn(xlX,  S2) is non-zero are located at 

(5.13) 

and the maximum of q,,(xIX, S2) occurs at x = X / n .  In the limit of large n the interval 
in x over which q,,(xIX, S 2 )  is non-zero tends to ( - S ,  S ) .  

One further relatively straightforward generalisation of the foregoing analysis 
replaces the sum in (2.1) by a linear combination of the rj. That is to say, 

x* = ( I /  n ) { X  * [ m( n - I)(s’ - x’/ n ) ] ’ ” }  

airj = u. (5.14) 
j = l  

In this case, (2.5) is changed to 
m 

qn(rklu) =P(rk) I_, exp[i(akrk - U )  ’ 01 fi C(ajw)dDw 
j = 1  
# k  

x([-:exp(-iu*w) j = 1  fi C(a jw)dDw (5.15) 

Notice that here the particular rj must be specified because the aj in (5.14) removes 
the inherent symmetry between variables. 

Just a few examples have been given to illustrate some of the rich variety of changes 
in configurational statistics of random walks consequent on the introduction of a 
constraint. Many other constraints naturally suggest themselves for further study. Of 
these, one case which appears to be of a higher order of difficulty, although not 
impossible, is the constraint that a lattice random walker reach a specified set for the 
first time at step n. A second related problem is to determine the effects of requiring 
the random walker to be in one of a set of sites at step n, or to be at a particular site 
at some time during the step number interval (0, n ) .  

Appendix 

We give a heuristic derivation of the asymptotic behaviour of Q ( R )  for large R. The 
expression for Q ( R )  given in (3.10) indicates that the major contribution to the integral 
comes from the neighbourhood w -0. This being true, we can return to (3.8) to find 
an approximation for C ( w )  accurate for small w. For this purpose, we can approximate 
the Bessel function in the integral representation of C ( w )  by 

Jo(wr)- 1 - (wr)2/4-exp[-(~r)2/4]  W + O  (Al l  
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so that 

exp(-a2w2v/4) 
d v. = p  Jom 1)l+p 

An integration by parts allows us to write 

The remaining integral on the right-hand side is in the form of a Laplace transform. 
To find its behaviour for u2  small, we use an Abelian theorem for Laplace transforms 
relating the small o2 behaviour to the large v behaviour of the integrand [ 141, exclusive 
of the exponential, i.e. U-@. By following this prescription, we find 

This implies that 

Q ( R ) -  JomwJo(wR)exp ( ' 4 5 )  

This representation for Q(R)  can be regarded as having come from an ( n  - 1)-step 
random walk for which the characteristic function is that given in the last line of (A4). 
Thus, we may replace the exponential in (A5) by the exact expression for C ( w )  in 
(3.8), with a suitably redefined constant which we denote by b. That is to say we let 
b2P = ( n  - 1) a Z p .  By interchanging the order of integration, we then find 

However, the o integral can be expressed in terms of a delta function: 

1 
r 

JOE w ~ ~ ( w r ) ~ ~ ( w ~ )  d o  =-S(r-R) ('47) 

with the result that 

Q ( R )  - 2pb2'/(R2+ b2)1+P. ('48) 

This shows that when n is held fixed and R tends towards 00, Q ( R )  - R-2('+p) as 
asserted. 
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